ler.gw_source_population.sfr_with_time_delay
Module for computing star formation rates with time delays.
This module provides functions for computing the star formation rate at a given redshift, accounting for time delays between formation and observation. The time delay distribution follows a 1/t power-law form, and the formation redshift is computed using the cosmological age-redshift relation.
Key Features:
Time-delayed star formation rate computation
Integration with Madau & Fragos (2017) SFR model
Monte Carlo integration for time delay averaging
Cosmological calculations using Astropy
Copyright (C) 2026 Hemanta Ph. Distributed under MIT License.
Module Contents
Functions
|
Compute star formation rate at observed redshift with time delay. |
- ler.gw_source_population.sfr_with_time_delay.sfr_with_time_delay_function(input_args)[source]
Compute star formation rate at observed redshift with time delay.
The star formation rate is time-delayed relative to the observed redshift, with a time delay uniformly distributed between td_min and td_max. The formation redshift is computed using the cosmological age-redshift relation.
- Parameters:
- input_args
list List containing the following elements in order:
z (
float): Observed redshiftidx (
int): Index identifier for the computationtd_min (
float): Minimum time delay (Gyr)td_max (
float): Maximum time delay (Gyr)H0 (
float): Hubble constant (km/s/Mpc)Omega_M (
float): Matter density parameterOmega_Lambda (
float): Dark energy density parametera (
float): Madau-Fragos SFR normalization parameterb (
float): Madau-Fragos low-z power-law slopec (
float): Madau-Fragos turnover parameterd (
float): Madau-Fragos high-z power-law slope
- input_args
- Returns:
- idx
int Index identifier (same as input).
- result
float Time-averaged star formation rate at observed redshift z.
- idx
Examples
>>> from ler.gw_source_population.sfr_with_time_delay import sfr_with_time_delay >>> args = [0.5, 0, 0.02, 13.0, 70.0, 0.3, 0.7, 0.01, 2.6, 3.2, 6.2] >>> idx, sfr = sfr_with_time_delay(args)