:py:mod:`ler.gw_source_population.sfr_with_time_delay` ====================================================== .. py:module:: ler.gw_source_population.sfr_with_time_delay .. autoapi-nested-parse:: Module for computing star formation rates with time delays. This module provides functions for computing the star formation rate at a given redshift, accounting for time delays between formation and observation. The time delay distribution follows a 1/t power-law form, and the formation redshift is computed using the cosmological age-redshift relation. Key Features: - Time-delayed star formation rate computation - Integration with Madau & Fragos (2017) SFR model - Monte Carlo integration for time delay averaging - Cosmological calculations using Astropy Copyright (C) 2026 Hemanta Ph. Distributed under MIT License. .. !! processed by numpydoc !! Module Contents --------------- Functions ~~~~~~~~~ .. autoapisummary:: ler.gw_source_population.sfr_with_time_delay.sfr_with_time_delay_function .. py:function:: sfr_with_time_delay_function(input_args) Compute star formation rate at observed redshift with time delay. The star formation rate is time-delayed relative to the observed redshift, with a time delay uniformly distributed between td_min and td_max. The formation redshift is computed using the cosmological age-redshift relation. :Parameters: **input_args** : ``list`` List containing the following elements in order: - z (``float``): Observed redshift - idx (``int``): Index identifier for the computation - td_min (``float``): Minimum time delay (Gyr) - td_max (``float``): Maximum time delay (Gyr) - H0 (``float``): Hubble constant (km/s/Mpc) - Omega_M (``float``): Matter density parameter - Omega_Lambda (``float``): Dark energy density parameter - a (``float``): Madau-Fragos SFR normalization parameter - b (``float``): Madau-Fragos low-z power-law slope - c (``float``): Madau-Fragos turnover parameter - d (``float``): Madau-Fragos high-z power-law slope :Returns: **idx** : ``int`` Index identifier (same as input). **result** : ``float`` Time-averaged star formation rate at observed redshift z. .. rubric:: Examples >>> from ler.gw_source_population.sfr_with_time_delay import sfr_with_time_delay >>> args = [0.5, 0, 0.02, 13.0, 70.0, 0.3, 0.7, 0.01, 2.6, 3.2, 6.2] >>> idx, sfr = sfr_with_time_delay(args) .. !! processed by numpydoc !!