ler.rates.ler
Module for calculating detection rates of gravitational wave events.
This module contains the main LeR class for calculating the rates of
detectable gravitational wave events, both lensed and unlensed. The class
inherits from LensGalaxyParameterDistribution
for source and lens parameters sampling, and utilizes image property calculations.
The inheritance hierarchy is as follows:
Uses the
gwsnrpackage for pdet calculation.
- Usage:
Basic workflow for rate calculation:
>>> from ler.rates import LeR >>> ler = LeR() >>> unlensed_params = ler.unlensed_cbc_statistics() >>> ler.unlensed_rate() >>> lensed_params = ler.lensed_cbc_statistics() >>> ler.lensed_rate() >>> ler.rate_ratio()
Copyright (C) 2026 Phurailatpam Hemantakumar. Distributed under MIT License.
Module Contents
Classes
Class to sample lensed and unlensed GW events and calculate their detection rates. |
- class ler.rates.ler.LeR(npool=int(4), z_min=0.0, z_max=10.0, event_type='BBH', lens_type='epl_shear_galaxy', cosmology=None, pdet_finder=None, json_file_names=None, interpolator_directory='./interpolator_json', create_new_interpolator=False, ler_directory='./ler_data', verbose=True, **kwargs)[source]
Bases:
ler.lens_galaxy_population.LensGalaxyParameterDistributionClass to sample lensed and unlensed GW events and calculate their detection rates.
This class provides functionality for sampling gravitational wave source parameters, detection probabilities, and computing detection rates for both lensed and unlensed compact binary coalescence events. Parameters of simulated events are stored in JSON files (not as class attributes) to conserve RAM memory.
Key Features:
Sampling of unlensed and lensed CBC event parameters
Detection probability calculation using
gwsnrpackage or custom functionsRate calculation for detectable events
Batch processing for memory efficiency
JSON-based parameter storage for reproducibility
- Parameters:
- npool
int Number of cores to use for parallel processing.
default: 4
- z_min
float Minimum redshift of the source population.
default: 0.0
- z_max
float Maximum redshift of the source population.
default: 10.0
- event_type
str Type of event to generate. source_priors and source_priors_params will be set accordingly.
Options:
‘BBH’: Binary Black Hole
‘BNS’: Binary Neutron Star
‘NSBH’: Neutron Star-Black Hole
default: ‘BBH’
- lens_type
str Type of lens model to use. lens_functions, lens_functions_params, lens_param_samplers and lens_param_samplers_params will be set accordingly.
Options:
‘epl_shear_galaxy’: Exponential Power Law Shear Galaxy
‘sie_galaxy’: Singular Isothermal Ellipsoid Galaxy
‘sis_galaxy’: Singular Isothermal Sphere Galaxy
default: ‘epl_shear_galaxy’
- cosmology
astropy.cosmology Cosmology to use for the calculation.
default: LambdaCDM(H0=70, Om0=0.3, Ode0=0.7, Tcmb0=0.0, Neff=3.04, m_nu=None, Ob0=0.0)
- pdet_finder
functionorNone Custom detection probability finder function.
If None, uses gwsnr’s pdet calculator.
The function should follow the signature:
def pdet_finder(gw_param_dict): return pdet_net_dictwhere pdet_net_dict.keys = [‘pdet_net’].
default: None
- json_file_names
dict Names of the JSON files to store the necessary parameters.
- default: dict(
ler_params=”ler_params.json”, unlensed_param=”unlensed_param.json”, unlensed_param_detectable=”unlensed_param_detectable.json”, lensed_param=”lensed_param.json”, lensed_param_detectable=”lensed_param_detectable.json”
)
- interpolator_directory
str Directory to store the interpolators.
default: ‘./interpolator_json’
- create_new_interpolator
boolordict Whether to create new interpolators. Look at
create_new_interpolator()for details.Options:
True: Create all interpolators anew
False: Load existing interpolators if available
dict: Specify which interpolators to create new
default: False
- ler_directory
str Directory to store the output parameters.
default: ‘./ler_data’
- verbose
bool If True, print all chosen parameters during initialization.
default: True
- **kwargs
dict Additional keyword arguments passed to parent classes:
LensGalaxyParameterDistribution,CBCSourceParameterDistribution,ImageProperties, andGWSNR(if snr_finder=’gwsnr’).
- npool
Notes
LeRclass inherits fromLensGalaxyParameterDistribution.Refer to that class for additional inherited attributes and methods.
Parameters are stored in JSON files for memory efficiency and reproducibility.
For stable rate estimates, use size >= 1e6 samples.
Examples
Basic usage:
>>> from ler import LeR >>> ler = LeR() >>> unlensed_params = ler.unlensed_cbc_statistics() >>> ler.unlensed_rate() >>> lensed_params = ler.lensed_cbc_statistics() >>> ler.lensed_rate() >>> ler.rate_ratio()
Instance Methods
LeR class has the following methods:
Method
Description
Generate unlensed GW source parameters
Generate unlensed parameters with batching
Calculate the unlensed detection rate
Generate lensed GW source parameters
Generate lensed parameters with batching
Calculate the lensed detection rate
General helper for rate calculation
Calculate lensed/unlensed rate ratio
Calculate and compare lensed/unlensed rates
Select n unlensed detectable events
Select n lensed detectable events
Instance Attributes
LeR class has the following attributes:
Attribute
Type
Unit
Description
intNumber of parallel processing cores
floatMinimum source redshift
floatMaximum source redshift
strType of CBC event (BBH, BNS, NSBH)
strType of lens galaxy model
CosmologyAstropy cosmology object
dictJSON file names for parameter storage
strDirectory for interpolator files
strDirectory for output parameter files
callableDetection probability finder function
dictAll LeR initialization arguments
dictInterpolator creation settings
- property npool[source]
Number of parallel processing cores.
- Returns:
- npool
int Number of logical cores to use for multiprocessing.
default: 4
- npool
- property z_min[source]
Minimum redshift of the source population.
- Returns:
- z_min
float Minimum source redshift for sampling.
default: 0.0
- z_min
- property z_max[source]
Maximum redshift of the source population.
- Returns:
- z_max
float Maximum source redshift for sampling.
default: 10.0
- z_max
- property event_type[source]
Type of compact binary coalescence event.
- Returns:
- event_type
str Type of CBC event.
Options:
‘BBH’: Binary Black Hole
‘BNS’: Binary Neutron Star
‘NSBH’: Neutron Star-Black Hole
default: ‘BBH’
- event_type
- property lens_type[source]
Type of lens galaxy model.
- Returns:
- lens_type
str Type of lens model.
Options:
‘epl_shear_galaxy’: Elliptical Power Law with external shear
‘sie_galaxy’: Singular Isothermal Ellipsoid
‘sis_galaxy’: Singular Isothermal Sphere
default: ‘epl_shear_galaxy’
- lens_type
- property cosmo[source]
Astropy cosmology object for distance calculations.
- Returns:
- cosmo
astropy.cosmology Cosmology used for luminosity distance and comoving volume calculations.
default: LambdaCDM(H0=70, Om0=0.3, Ode0=0.7, Tcmb0=0.0, Neff=3.04, m_nu=None, Ob0=0.0)
- cosmo
- property json_file_names[source]
Dictionary of JSON file names for parameter storage.
- Returns:
- json_file_names
dict Dictionary with keys:
‘ler_params’: LeR initialization parameters
‘unlensed_param’: Unlensed event parameters
‘unlensed_param_detectable’: Detectable unlensed events
‘lensed_param’: Lensed event parameters
‘lensed_param_detectable’: Detectable lensed events
- json_file_names
- property interpolator_directory[source]
Directory path for interpolator JSON files.
- Returns:
- interpolator_directory
str Path to directory containing interpolator data files.
default: ‘./interpolator_json’
- interpolator_directory
- property ler_directory[source]
Directory path for LeR output files.
- Returns:
- ler_directory
str Path to directory for storing output parameter files.
default: ‘./ler_data’
- ler_directory
- property create_new_interpolator[source]
Configuration dictionary for interpolator creation settings.
- Returns:
- create_new_interpolator
dict Dictionary specifying which interpolators to create.
Each key is an interpolator name, and values are dicts with:
‘create_new’: bool - Whether to create new interpolator
‘resolution’: int or list - Grid resolution for interpolation
Special key ‘gwsnr’ is a bool for GWSNR interpolator creation. Default: dict(
merger_rate_density = {‘create_new’: False, ‘resolution’: 500}, redshift_distribution = {‘create_new’: False, ‘resolution’: 500}, luminosity_distance = {‘create_new’: False, ‘resolution’: 500}, differential_comoving_volume = {‘create_new’: False, ‘resolution’: 500}, source_frame_masses = {‘create_new’: False, ‘resolution’: 500}, geocent_time = {‘create_new’: False, ‘resolution’: 500}, ra = {‘create_new’: False, ‘resolution’: 500}, dec = {‘create_new’: False, ‘resolution’: 500}, phase = {‘create_new’: False, ‘resolution’: 500}, psi = {‘create_new’: False, ‘resolution’: 500}, theta_jn = {‘create_new’: False, ‘resolution’: 500}, a_1 = {‘create_new’: False, ‘resolution’: 500}, a_2 = {‘create_new’: False, ‘resolution’: 500}, tilt_1 = {‘create_new’: False, ‘resolution’: 500}, tilt_2 = {‘create_new’: False, ‘resolution’: 500}, phi_12 = {‘create_new’: False, ‘resolution’: 500}, phi_jl = {‘create_new’: False, ‘resolution’: 500}, velocity_dispersion = {‘create_new’: False, ‘resolution’: 500, ‘zl_resolution’: 48}, axis_ratio = {‘create_new’: False, ‘resolution’: 500, ‘sigma_resolution’: 48}, lens_redshift = {‘create_new’: False, ‘resolution’: 48, ‘zl_resolution’: 48}, lens_redshift_intrinsic = {‘create_new’: False, ‘resolution’: 500}, optical_depth = {‘create_new’: False, ‘resolution’: 48}, comoving_distance = {‘create_new’: False, ‘resolution’: 500}, angular_diameter_distance = {‘create_new’: False, ‘resolution’: 500}, angular_diameter_distance_z1z2 = {‘create_new’: False, ‘resolution’: 500}, density_profile_slope = {‘create_new’: False, ‘resolution’: 100}, lens_parameters_kde_sl = {‘create_new’: False, ‘resolution’: 5000}, cross_section = {‘create_new’: False, ‘resolution’: [25, 25, 45, 15, 15]}, gwsnr = False,
)
- create_new_interpolator
- property pdet_finder[source]
Detection probability finder function.
- Returns:
- pdet_finder
callable Function that calculates detection probability for GW events.
The function signature should be:
pdet_finder(gw_param_dict) -> dictwith key ‘pdet_net’.
- pdet_finder
- property ler_args[source]
Dictionary of all LeR initialization arguments.
- Returns:
- ler_args
dict Dictionary containing all parameters used to initialize LeR and
its parent classes, useful for reproducibility.
- ler_args
- unlensed_cbc_statistics(size=100000, batch_size=50000, resume=True, save_batch=False, output_jsonfile=None)[source]
Generate unlensed GW source parameters.
This function calls the unlensed_sampling_routine function to generate the parameters in batches. The generated parameters are stored in a JSON file; and if save_batch=True, it keeps updating the file in batches.
- Parameters:
- size
int Number of samples to generate.
default: 100000
- batch_size
int Batch size for sampling.
default: 50000
- resume
bool If True, the function will resume from the last batch.
default: True
- save_batch
bool If True, saves parameters in batches during sampling.
If False, saves all parameters at the end (faster).
default: False
- output_jsonfile
str JSON file name for storing the parameters.
default: None (uses self.json_file_names[“unlensed_param”])
- size
- Returns:
- unlensed_param
dict Dictionary of unlensed GW source parameters. The included parameters and their units are as follows (for default settings):
Parameter
Units
Description
zs
redshift of the source
geocent_time
s
GPS time of coalescence
ra
rad
right ascension
dec
rad
declination
phase
rad
phase of GW at reference frequency
psi
rad
polarization angle
theta_jn
rad
inclination angle
a_1
spin_1 of the compact binary
a_2
spin_2 of the compact binary
luminosity_distance
Mpc
luminosity distance
mass_1_source
Msun
mass_1 of the compact binary (source frame)
mass_2_source
Msun
mass_2 of the compact binary (source frame)
mass_1
Msun
mass_1 of the compact binary (detector frame)
mass_2
Msun
mass_2 of the compact binary (detector frame)
pdet_L1
pdet of L1
pdet_H1
pdet of H1
pdet_V1
pdet of V1
pdet_net
pdet of the network
- unlensed_param
Examples
>>> from ler import LeR >>> ler = LeR() >>> unlensed_param = ler.unlensed_cbc_statistics()
- unlensed_sampling_routine(size, output_jsonfile, resume=True, save_batch=True)[source]
Generate unlensed GW source parameters for a single batch.
This is the core sampling routine called by unlensed_cbc_statistics. It samples GW source parameters and calculates detection probabilities.
- Parameters:
- size
int Number of samples to generate.
- output_jsonfile
str JSON file name for storing the parameters.
- resume
bool If True, appends new samples to existing JSON file.
default: True
- save_batch
bool If True, saves parameters in batches during sampling.
default: True
- size
- Returns:
- unlensed_param
dict Dictionary of unlensed GW source parameters.
- unlensed_param
- unlensed_rate(unlensed_param=None, pdet_threshold=0.5, pdet_type='boolean', output_jsonfile=None)[source]
Function to calculate the unlensed rate.
This function calculates the detection rate for unlensed events and stores the parameters of the detectable events in a JSON file.
- Parameters:
- unlensed_param
dictorstr Dictionary of GW source parameters or JSON file name.
default: None (uses self.json_file_names[“unlensed_param”])
- pdet_threshold
float Threshold for detection probability.
default: 0.5
- pdet_type
str Detectability condition type.
Options:
‘boolean’: Binary detection based on pdet_threshold
‘probability_distribution’: Uses pdet values directly
default: ‘boolean’
- output_jsonfile
str JSON file name for storing the parameters of the detectable events.
default: None (uses self.json_file_names[“unlensed_param_detectable”])
- unlensed_param
- Returns:
- total_rate
float Total unlensed rate (yr^-1).
- unlensed_param
dict Dictionary of unlensed GW source parameters of the detectable events.
- total_rate
Examples
>>> from ler import LeR >>> ler = LeR() >>> ler.unlensed_cbc_statistics() >>> total_rate, unlensed_param_detectable = ler.unlensed_rate()
- rate_function(detectable_size, total_size, param_type='unlensed', verbose=True)[source]
Calculate the detection rate for unlensed or lensed events.
This is a general helper function that computes the rate based on Monte Carlo integration using the ratio of detectable to total events.
- Parameters:
- detectable_size
intorfloat Number of detectable events (or sum of pdet values).
- total_size
int Total number of simulated events.
- param_type
str Type of parameters.
Options:
‘unlensed’: Use unlensed normalization
‘lensed’: Use lensed normalization
default: ‘unlensed’
- verbose
bool If True, print rate information.
default: True
- detectable_size
- Returns:
- rate
float Event rate (yr^-1).
- rate
Examples
>>> from ler import LeR >>> ler = LeR() >>> rate = ler.rate_function(detectable_size=100, total_size=1000)
- lensed_cbc_statistics(size=100000, batch_size=50000, save_batch=False, resume=True, output_jsonfile=None)[source]
Generate lensed GW source parameters.
This function calls the lensed_sampling_routine function to generate the parameters in batches. The generated parameters are stored in a JSON file; and if save_batch=True, it keeps updating the file in batches.
- Parameters:
- size
int Number of samples to generate.
default: 100000
- batch_size
int Batch size for sampling.
default: 50000
- save_batch
bool If True, saves parameters in batches during sampling.
If False, saves all parameters at the end (faster).
default: True
- resume
bool If True, the function will resume from the last batch.
default: True
- output_jsonfile
str JSON file name for storing the parameters.
default: None (uses self.json_file_names[“lensed_param”])
- size
- Returns:
- lensed_param
dict Dictionary of lensed GW source parameters. The included parameters and their units are as follows (for default settings):
- lensed_param
Examples
>>> from ler import LeR >>> ler = LeR() >>> lensed_param = ler.lensed_cbc_statistics()
- lensed_sampling_routine(size, output_jsonfile, save_batch=True, resume=True)[source]
Generate lensed GW source parameters for a single batch.
This is the core sampling routine called by lensed_cbc_statistics. It samples lens parameters, calculates image properties, and computes detection probabilities for the images of lensed events.
- Parameters:
- size
int Number of samples to generate.
- output_jsonfile
str JSON file name for storing the parameters.
- save_batch
bool If True, saves parameters in batches during sampling.
default: True
- resume
bool If True, appends new samples to existing JSON file.
default: True
- size
- Returns:
- lensed_param
dict Dictionary of lensed GW source parameters.
- lensed_param
- lensed_rate(lensed_param=None, pdet_threshold=[0.5, 0.5], num_img=[1, 1], output_jsonfile=None, nan_to_num=True, pdet_type='boolean')[source]
Function to calculate the lensed rate.
This function calculates the detection rate for lensed events and stores the parameters of the detectable events in a JSON file.
- Parameters:
- lensed_param
dictorstr Dictionary of lensed GW source parameters or JSON file name.
default: None (uses self.json_file_names[“lensed_param”])
- pdet_threshold
floatorlist Threshold for detection probability.
default: [0.5, 0.5]
- num_img
intorlist Number of images corresponding to the pdet_threshold.
Together with pdet_threshold = [0.5, 0.5], it means that two images with pdet > 0.5.
Same condition can also be represented by pdet_threshold = 0.5 and num_img = 2.
default: [1, 1]
- output_jsonfile
str JSON file name for storing the parameters of the detectable events.
default: None (uses self.json_file_names[“lensed_param_detectable”])
- nan_to_num
bool If True, NaN values will be converted to 0.
default: True
- pdet_type
str Detectability condition type.
Options:
‘boolean’: Binary detection based on pdet_threshold
‘probability_distribution’: Uses pdet values directly
default: ‘boolean’
- lensed_param
- Returns:
- total_rate
float Total lensed rate (yr^-1).
- lensed_param
dict Dictionary of lensed GW source parameters of the detectable events. The included parameters and their units are as follows (for default settings):
- total_rate
Examples
>>> from ler import LeR >>> ler = LeR() >>> ler.lensed_cbc_statistics() >>> total_rate, lensed_param_detectable = ler.lensed_rate()
- rate_comparison_with_rate_calculation(unlensed_param=None, pdet_threshold_unlensed=0.5, output_jsonfile_unlensed=None, lensed_param=None, pdet_threshold_lensed=[0.5, 0.5], num_img_lensed=[1, 1], output_jsonfile_lensed=None, nan_to_num=True, pdet_type='boolean')[source]
Calculate and compare unlensed and lensed detection rates.
This function calculates both unlensed and lensed rates and computes their ratio. It stores the parameters of the detectable events in JSON files. Using this function eliminates the need to call unlensed_rate and lensed_rate separately.
- Parameters:
- unlensed_param
dictorstr Dictionary of GW source parameters or JSON file name.
default: None (uses self.json_file_names[“unlensed_param”])
- pdet_threshold_unlensed
float Detection probability threshold for unlensed events.
default: 0.5
- output_jsonfile_unlensed
str JSON file name for storing detectable unlensed parameters.
default: None
- lensed_param
dictorstr Dictionary of lensed GW source parameters or JSON file name.
default: None (uses self.json_file_names[“lensed_param”])
- pdet_threshold_lensed
floatorlist Detection probability threshold for lensed events.
default: [0.5, 0.5]
- num_img_lensed
list Number of images for lensed events.
default: [1, 1]
- output_jsonfile_lensed
str JSON file name for storing detectable lensed parameters.
default: None
- nan_to_num
bool If True, NaN values will be converted to 0.
default: True
- pdet_type
str Detectability condition type.
Options:
‘boolean’: Binary detection based on pdet_threshold
‘probability_distribution’: Uses pdet values directly
default: ‘boolean’
- unlensed_param
- Returns:
- rate_ratio
float Ratio of unlensed rate to lensed rate.
- unlensed_param_detectable
dict Dictionary of detectable unlensed GW source parameters.
- lensed_param_detectable
dict Dictionary of detectable lensed GW source parameters.
- rate_ratio
Examples
>>> from ler import LeR >>> ler = LeR() >>> ler.unlensed_cbc_statistics() >>> ler.lensed_cbc_statistics() >>> rate_ratio, unlensed_param, lensed_param = ler.rate_comparison_with_rate_calculation()
- rate_ratio()[source]
Calculate and display the unlensed to lensed merger rate ratio.
This function retrieves the unlensed_rate and lensed_rate from the JSON file specified in self.json_file_names[“ler_params”] and computes their ratio.
- Returns:
- rate_ratio
float Ratio of unlensed rate to lensed rate.
- rate_ratio
Examples
>>> from ler import LeR >>> ler = LeR() >>> ler.unlensed_cbc_statistics() >>> ler.lensed_cbc_statistics() >>> ler.unlensed_rate() >>> ler.lensed_rate() >>> ler.rate_ratio()
- selecting_n_unlensed_detectable_events(size=100, batch_size=50000, stopping_criteria=dict(relative_diff_percentage=0.5, number_of_last_batches_to_check=4), pdet_threshold=0.5, resume=True, output_jsonfile='n_unlensed_param_detectable.json', meta_data_file='meta_unlensed.json', pdet_type='boolean', trim_to_size=False)[source]
Generate a target number of detectable unlensed events by sampling in batches, with the option to stop once the cumulative rate has stabilized.
This function samples unlensed parameters and saves only the detectable events in a JSON file. It also records metadata including the total number of events and the cumulative rate.
- Parameters:
- size
int Target number of detectable samples to collect.
default: 100
- batch_size
int Batch size for sampling.
default: 50000
- stopping_criteria
dictorNone Criteria for stopping sample collection (but will not stop until n>size).
Keys:
‘relative_diff_percentage’: Maximum relative difference in rate (float)
‘number_of_last_batches_to_check’: Number of batches for comparison (int)
If None, stops when detectable events exceed size.
default: dict(relative_diff_percentage=0.5, number_of_last_batches_to_check=4)
- pdet_threshold
float Detection probability threshold.
default: 0.5
- resume
bool If True, resumes from last saved batch.
default: True
- output_jsonfile
str JSON file name for storing detectable parameters.
default: ‘n_unlensed_param_detectable.json’
- meta_data_file
str JSON file name for storing metadata.
default: ‘meta_unlensed.json’
- pdet_type
str Detectability condition type.
Options:
‘boolean’: Binary detection based on pdet_threshold
‘probability_distribution’: Uses pdet values directly
default: ‘boolean’
- trim_to_size
bool If True, trims final result to exactly size events.
default: False
- size
- Returns:
- param_final
dict Dictionary of unlensed GW source parameters of detectable events.
- param_final
Examples
>>> from ler import LeR >>> ler = LeR() >>> unlensed_param = ler.selecting_n_unlensed_detectable_events(size=100)
- selecting_n_lensed_detectable_events(size=100, stopping_criteria=dict(relative_diff_percentage=2, number_of_last_batches_to_check=4), batch_size=50000, pdet_threshold=[0.5, 0.5], num_img=[1, 1], resume=True, pdet_type='boolean', output_jsonfile='n_lensed_params_detectable.json', meta_data_file='meta_lensed.json', trim_to_size=False, nan_to_num=True)[source]
Generate a target number of detectable lensed events by sampling in batches, with the option to stop once the cumulative rate has stabilized.
This function samples lensed parameters and saves only the detectable events in a JSON file. It also records metadata including the total number of events and the cumulative rate.
- Parameters:
- size
int Target number of detectable samples to collect.
default: 100
- stopping_criteria
dictorNone Criteria for stopping sample collection (but will not stop until n>size).
Keys:
‘relative_diff_percentage’: Maximum relative difference in rate (float)
‘number_of_last_batches_to_check’: Number of batches for comparison (int)
If None, stops when detectable events exceed size.
default: dict(relative_diff_percentage=2, number_of_last_batches_to_check=4)
- batch_size
int Batch size for sampling.
default: 50000
- pdet_threshold
floatorlist Detection probability threshold.
default: [0.5, 0.5]
- num_img
list Number of images corresponding to each pdet_threshold.
default: [1, 1]
- resume
bool If True, resumes from last saved batch.
default: True
- pdet_type
str Detectability condition type.
Options:
‘boolean’: Binary detection based on pdet_threshold
‘probability_distribution’: Uses pdet values directly
default: ‘boolean’
- output_jsonfile
str JSON file name for storing detectable parameters.
default: ‘n_lensed_params_detectable.json’
- meta_data_file
str JSON file name for storing metadata.
default: ‘meta_lensed.json’
- trim_to_size
bool If True, trims final result to exactly size events.
default: False
- nan_to_num
bool If True, NaN values will be converted to 0.
default: False
- size
- Returns:
- param_final
dict Dictionary of lensed GW source parameters of detectable events.
- param_final
Examples
>>> from ler import LeR >>> ler = LeR() >>> lensed_param = ler.selecting_n_lensed_detectable_events(size=100)